

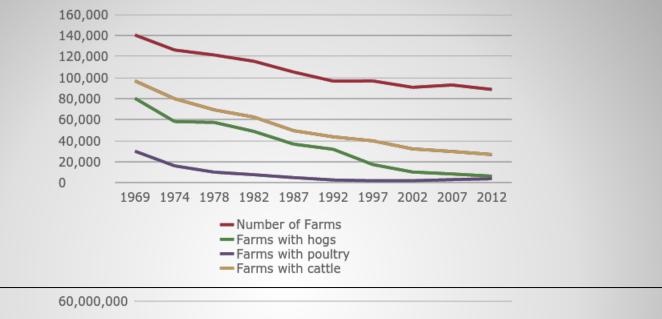
Livestock and Water Quality: A farmer's perspective

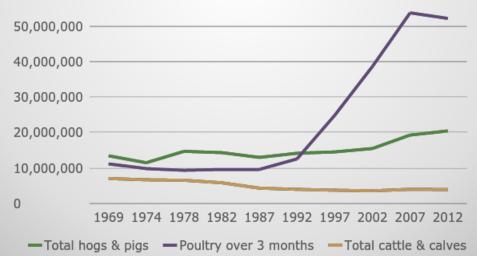
Chad Ingels - Farmer ClearWater Ag Strategies, LLC May 30, 2017

Farmer: Corn, Soybean, Hogs

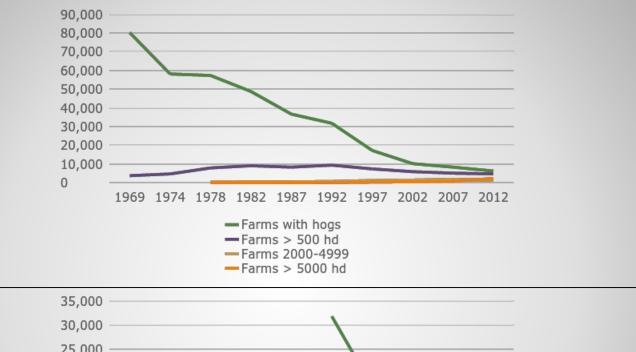
Former ISU Extension Watershed Specialist

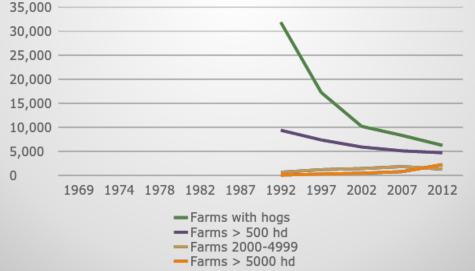
Founder of ClearWater Ag Strategies, LLC


Environmental Protection Commissioner


Iowa Nutrient Research and Education Council Liaison

Experience




Experience

Farms and Livestock

Hogs

		Daily		Yearly	
Swine	Space	Liquid, Pit* or Basin**	Liquid, Lagoon***	Solid Manure	
Nursery, 25 lb.	1 head	0.2 gal	0.7 gal	0.34 tons	
Grow-finish, 150 lb.					
Formed storage*					
Dry feeders	1 head	1.2 gal		2.05 tons	
Wet/dry feeders	1 head	0.9 gal		2.05 tons	
Earthen storage**	1 head	1.2 gal		2.05 tons	
Lagoon***	1 head		4.1 gal	2.05 tons	
Gestation, 400 lb.	1 head	3.0 gal	3.7 gal	2.77 tons	
Sow & Litter, 450 lb	1 crate	3.5 gal	7.5 gal	6.16 tons	
Farrow-nursery	Per sow in	2.2 gal	5.4 gal	6.09 tons	
Farrow-finish	breeding herd Per sow in breeding herd	9.4 gal	30 gal	12.25 tons	

19,000,000 finishing pigs = 7,000,000,000 gallons manure/year 7,000,000,000 gallons at 3300 gallons/acre = 2,121,000 acres 2,121,000 acres/13,709,408 acres of corn in Iowa = 15% 11,588,408 acres will still receive commercial N & P fertilizer

Manure quantity

SAMPLE! SAMPLE! SAMPLE!

Especially when utilizing liquid manure sources.

Manure value

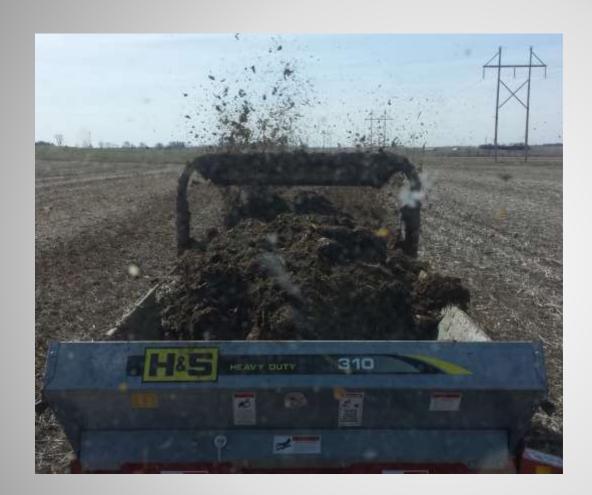
Dry feed system (N=19)			Wet/Dry feed system (N=26)				
Sample location from pit	Average, lb/1,000 gallons	Range, lb/1,000 gallons	Standard Deviation	Sample location from pit	Average, lb/1,000 gallons	Range, lb/1,000 gallons	Standard Deviation
Nitrogen	52.2	34.7 - 71.9	10.7	Nitrogen	50.7	21.0 - 03.3	
Profile Sample	58.3	34.8 - 94.3	15.1	Profile Sample	61.3	27.3 - 98.3	14.5
First load cample	0110	00.0 11.0	1 March	First load sample	50.2	2110 0010	
Middle load sample	58.0	30.4 - 86.3	14.1	Middle load sample	59.3	28.5 - 92.8	15.4
Last load sample Ammonium	61.1	42.1 - 79.2	11.6	Last load sample Ammonium	64.6	41.7 - 95.4	13.3
Top Sample	44.5	29.1 - 70.3	11.8	Top Sample	45.5	16.3 - 74.2	14.2
Profile Sample	44.6	27:9 - 86.3	15.7	Profile Sample	47.3	18.7 - 85.9	18.1
First load sample	32.5	19.3 - 49.2	8.8	First load sample	36.8	17.2 - 71.1	13.0
Middle load sample	32.5	17.7 - 46.7	8.2	Middle load sample	35.5	20.4 - 70.2	13.1
Last load sample	32.8	21.7 - 54.9	9.1	Last load sample	38.2	19.4 - 77.8	13.0
Phosphate				Phosphate			
Top Sample	39.4	18.4 - 54.6	10.3	Top Sample	36.7	16.5 - 59.5	12.8
Profile Sample	48.3	24.0 - 120.5	21.9	Profile Sample	46.9	22.4 - 78.3	14.3
First load sample	39.1	13.2 - 55.8	12.3	First load sample	38.2	12.6 - 71.7	11.3
Middle load sample	39.7	12.7 - 70.4	14.4	Middle load sample	41.5	14.5 - 77.2	11.9
Last load sample	56.3	24.9 - 103.4	20.7	Last load sample	51.4	34.1 - 87.7	12.7
Potash				Potash			
Top Sample	38:6	18.3 - 55.7	9.8	Top Sample	42.8	27.2 - 62.4	7.3
Profile Sample	38.5	26.0 - 52.8	8.4	Profile Sample	43.7	29.8 - 60.2	7.2
First load sample	40.5	27.1 - 52.5	8.0	First load sample	45.5	19.3 - 63.5	9.4
Middle load sample	41.5	26.9 - 62.8	9.7	Middle load sample	46.4	19.2 - 68.5	9,5
Last load sample	41.0	25.4 - 62.6	9.9	Last load sample	47.0	21.5 - 67.5	7.9

Manure value

Sioux Co., Iowa

Iowa DNR Manure Management Plan Form Appendix A.

Manure Type	Ν	Р	K
Swine (wet/dry feed)	58	40	45
Swine (dry feed)	50	42	30
Dairy (liquid)	25	12	11
Beef (liquid)	40	25	35
Dairy & Beef (dry)	12	6	12


Nutrient content

Facility Type	Total N Lbs/space-year	P2O5 Lbs/space-year	K2O Lbs/space-year
Open Lot (runoff not included)	66	48	54
Bedded confinement	98	57	58
Deep pit	94	59	82
Excreted	122	68	93

Via Dan Andersen, ISU ABE

http://themanurescoop.blogspot.com/2016/04/beefmanure-management-systems-manure.html

Nutrient content of beef systems

Nitrogen remaining

Incorporate liquid 98%

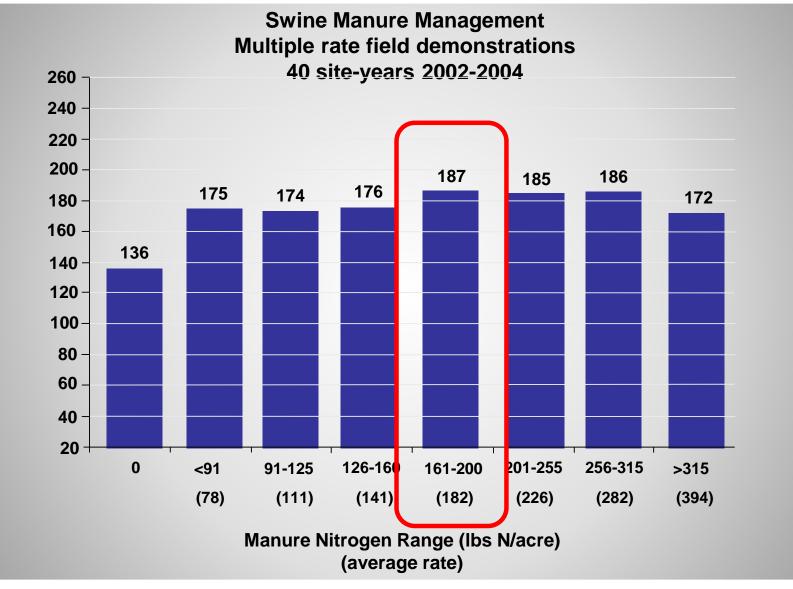
Broadcast & Incorporate liquid 95%

Broadcast liquid 75%

Broadcast solid 70%

Application nutrient loss

ISU PMR1003


CROP	Ν	Ρ	К
Corn – grain (200 bu)	190	64	44
Corn – silage (200 bu)	190	88	220
Soybean (60 bu)		43	72
Alfalfa (6 t)		78	258

3300 gallons swine finishing manure has nutrient content of:

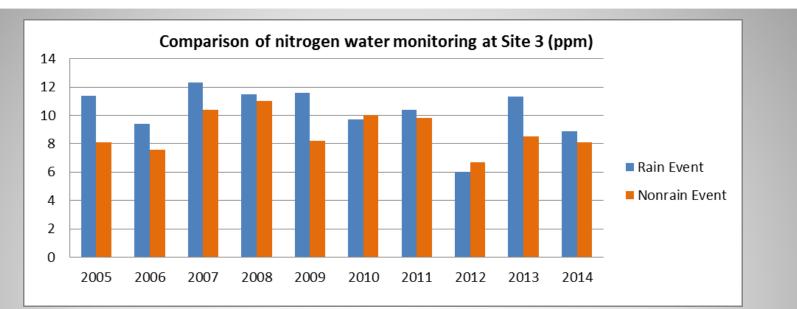
188N - 132P - 149K

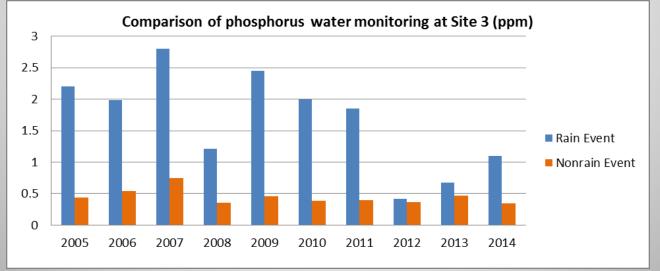
Crop nutrient needs

Rate of application

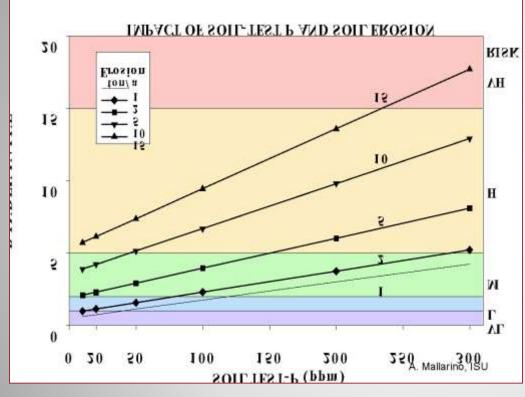
Corn Yield (bushels/acre)

Community-led watershed efforts Phosphorus Index Measure performance through sampling – manure, soil & water No-till Cover crops Bioreactors Saturated buffers


Reducing Environmental Impact

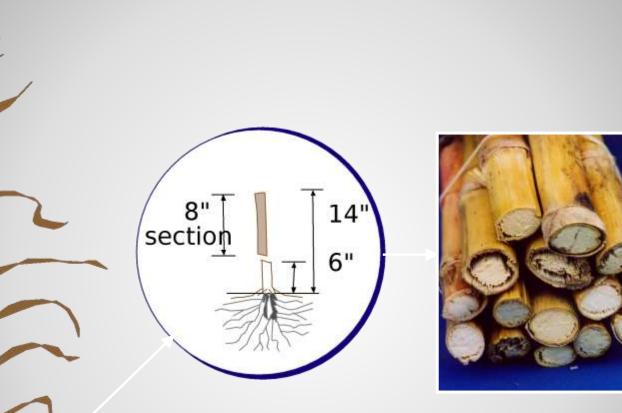


Community-led watershed efforts



Community-led watershed efforts

Community-led watershed efforts



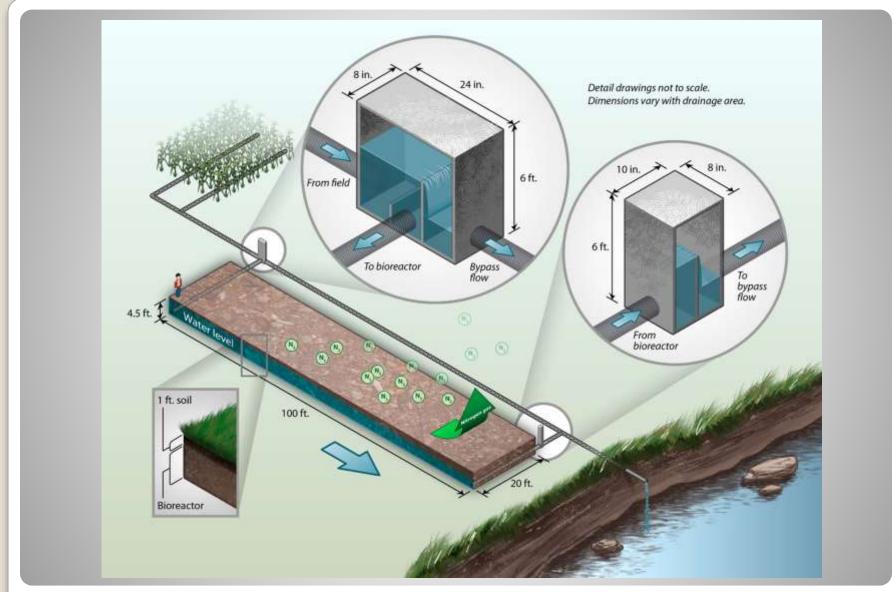
Iowa Phosphorus Index

- Soil loss
- Distance to stream
- Soil test P
- Management practices
- P application
- Drainage

A measure of the risk of phosphorus loss to the environment.

Phosphorus Index

The optimum range is **700-2000 ppm N**. Results falling in the optimum range are expected to produce the most profitable return to the nitrogen/manure investment.


Measure performance in the field

Measure performance in the water

Cover Crops & No-Till

Denitrifying bioreactors

Saturated buffers

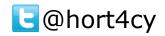
Cover the manure source

WHAT?

WHERE?

WHEN?

Documentation


Water quality and soil conservation are a priority for all, including farmers. It is critical we continue to show progress through a collaborative, scientific approach. This is why education is so important, not only for farmers, but for the general public so they understand this will not happen overnight, but it will take several years of consistent work from all of us.

— Jeffrey Pape, Dyersville Des Moines Register, May 29, 2017

chad.ingels@gmail.com

563-920-5899

